Performance of Jacobi preconditioning in Krylov subspace solution of finite element equations
نویسندگان
چکیده
This paper examines the performance of the Jacobi preconditioner when used with two Krylov subspace iterative methods. The number of iterations needed for convergence was shown to be different for drained, undrained and consolidation problems, even for similar condition number. The differences were due to differences in the eigenvalue distribution, which cannot be completely described by the condition number alone. For drained problems involving large stiffness ratios between different material zones, illconditioning is caused by these large stiffness ratios. Since Jacobi preconditioning operates on degrees-offreedom, it effectively homogenizes the different spatial sub-domains. The undrained problem, modelled as a nearly incompressible problem, is much more resistant to Jacobi preconditioning, because its illconditioning arises from the large stiffness ratios between volumetric and distortional deformational modes, many of which involve the similar spatial domains or sub-domains. The consolidation problem has two sets of degrees-of-freedom, namely displacement and pore pressure. Some of the eigenvalues are displacement dominated whereas others are excess pore pressure dominated. Jacobi preconditioning compresses the displacement-dominated eigenvalues in a similar manner as the drained problem, but porepressure-dominated eigenvalues are often over-scaled. Convergence can be accelerated if this over-scaling is recognized and corrected for. Copyright # 2002 John Wiley & Sons, Ltd.
منابع مشابه
Solving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملAn Investigation into Preconditioning Iterative Solvers for Hydrodynamic Problems
Two Krylov subspace iterative methods, GMRES and QMR, were studied in conjunction with several preconditioning techniques for solving the linear system raised from the finite element discretisation of incompressible Navier-Stokes equations for hydrodynamic problems. The preconditioning methods under investigation were the incomplete factorisation methods such as ILU(0) and MILU, the Stokes prec...
متن کاملA block multigrid strategy for two-dimensional coupled PDEs
We consider the solution of linear systems of equations, arising from the finite element approximation of coupled differential boundary value problems. Letting the fineness parameter tend to zero gives rise to a sequence of large scale structured two-by-two block matrices. We are interested in the efficient iterative solution of the so arising linear systems, aiming at constructing optimal prec...
متن کاملSome Preconditioning Techniques for Saddle Point Problems
Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution...
متن کاملA FETI-preconditioned conjugate gradient method for large-scale stochastic finite element problems
In the spectral stochastic finite element method for analyzing an uncertain system, the uncertainty is represented by a set of random variables, and a quantity of interest such as the system response is considered as a function of these random variables. Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The...
متن کامل